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Temporal Interpolation of Geostationary Satellite
Imagery With Optical Flow

Thomas J. Vandal

Abstract— Applications of satellite data in areas such as
weather tracking and modeling, ecosystem monitoring, wildfire
detection, and land-cover change are heavily dependent on the
tradeoffs to spatial, spectral, and temporal resolutions of observa-
tions. In weather tracking, high-frequency temporal observations
are critical and used to improve forecasts, study severe events,
and extract atmospheric motion, among others. However, while
the current generation of geostationary (GEO) satellites has
hemispheric coverage at 10-15-min intervals, higher temporal
frequency observations are ideal for studying mesoscale severe
weather events. In this work, we present a novel application
of deep learning-based optical flow to temporal upsampling of
GEO satellite imagery. We apply this technique to 16 bands
of the GOES-R/Advanced Baseline Imager mesoscale dataset to
temporally enhance full-disk hemispheric snapshots of different
spatial resolutions from 10 to 1 min. Experiments show the
effectiveness of task-specific optical flow and multiscale blocks
for interpolating high-frequency severe weather events relative to
bilinear and global optical flow baselines. Finally, we demonstrate
strong performance in capturing variability during convective
precipitation events.

Index Terms—Image processing, multispectral imaging, neural
networks, remote sensing, scientific computing.

I. INTRODUCTION

VERY second, satellites around the earth are gener-

ating valuable data to monitor weather, land cover,
infrastructure, and human activity. Satellite sensors capture
reflectance/radiance intensities at designated spectral wave-
lengths, spatial, and temporal resolutions. Properties of the
sensors, including wavelengths and resolutions, are optimized
for particular applications. Most commonly, satellites are built
to capture the visible wavelengths, which are essentially RGB
images. Scientific specific sensors capture a larger range of
wavelengths, such as micro, infrared, and thermal waves,
providing information to many applications at temporal fre-
quencies from 1 min at mesoscale to multiple years at climate
scales. Satellites carrying sensors typically follow one of two
orbits, geostationary (GEO) and polar. Polar-orbiting satellites
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most often have daily or longer revisit times and include
NASA’s A-Train [1], Landsat-8 [2], and Sentinel [3]. Data pro-
vided by the Moderate Resolution Imaging Spectroradiometer
(MODIS) [4] carried on Terra/Aqua and Landsat are widely
used for quantifying effects of climate change, land-cover
usage, and air pollution, among others, but are not well suited
to monitoring high-frequency events. On the other hand, GEO
satellites are well suited for subdaily events, such as tracking
weather and studying diurnal cycles. While a high altitude
reduces spatial resolution, current generation multispectral
sensors on GEO satellites are able to provide 1-15-min
observations, enabling immense opportunity for understanding
atmospheric, land cover, and oceanic dynamics. High temporal
frequency observations from satellites are critical for studying
extreme environmental events, such as storm tracking and
wildfire detection, but, due to physical constraints, are not
available at global scales. In this work, we present an approach
to temporally interpolate global 10-min observations to 1 min
by learning from spatially isolated mesoscale observations.

Within a few years, a constellation of GEO satellites by
multiple international institutions will provide global coverage
of the earth’s state. The latest generation of GEO satellites
includes NOAA/NASA’s GOES-16/17 [5], Japan’s Himwari-
8/9 [6], China’s Fengyun-4 [7], and Korea’s GEO-KOMPSAT-
2A with future plans in development. Full-disk coverage
from such satellites has revisit times of 10-15 min allowing
applications to real-time detection and observation of wild-
fires [8], hurricane tracking, air quality, flooding, precipitation
estimation, flood risk, and others [9]. Furthermore, given
improved spectral and spatial resolutions in current-generation
sensors, GEO satellites open future opportunities to incor-
porate and learn from less frequent observations from polar
orbiters.

While 10-15-min revisit times are temporally sufficient
for many applications, higher frequency snapshots can aid a
variety of tasks. For instance, understanding rapidly evolving
convective events is a high priority for improving atmospheric
models, which are notoriously poor at simulating heavy pre-
cipitation, as highlighted in NASA’s Earth Science Decadal
Survey [10]. However, data for analyzing such events are
often not available at the desired frequency. Similarly, com-
paring multiple satellite observations is dependent on their
corresponding timestamps. This leads to an interpolation
task between observations in a multispectral spatiotemporal
sequence, similar to that of video interpolation.

Temporal interpolation requires a weighted combination
of two images. The simplest approach to interpolation is
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Fig. 1. Cloud-top temperature (K) from (a) “clean” IR long-wave window
band 13 full-disk and (b) mesoscale coverages.

to directly weigh each pixel in the image by the relative
difference in time. Modern techniques to this problem use deep
learning and optical flow to warp images based on movement
captured by tracking apparent motion [11]-[13]. In this work,
we present a novel application of deep learning-based optical
flow to the problem of temporal interpolation between GEO
satellite imagery. We compare properties of global and spec-
tral specific optical flow interpolation using the SuperSlomo
method (SSM) [13] with baselines. Our experiments show
that spectral-specific SSM is capable of interpolating high-
frequency atmospheric events. Furthermore, visual analysis
suggests that the learned flow resembles atmospheric motion
and dynamic visibility maps.

The remainder of this article is outlined as follows.
Section II discusses related work including resolution enhance-
ment in the earth sciences and the current state of video frame
interpolation. Section III introduces the GOES-R dataset.
Section IV details methodology. Experiments on a large-
scale dataset and a severe storm case study are presented in
Section V. Finally, Section VI concludes with challenges and
future work.

II. GOES-R SATELLITE DATASET

GEO satellites are synchronized in orbit with the earth’s
spin to hover over a single location. Given this location,
the sensor, measuring radiation as often as possible, can fre-
quently capture data over a continuous and large region. This
feature makes GEO satellites ideal for capturing environmental
dynamics. The GOES-R series satellites, namely, GOES-16/17
(east and west sides of the Americas), operated by NASA and
NOAA provide scientists with unprecedented temporal fre-
quency enabling real-time environmental monitoring using the
Advanced Baseline Imager (ABI) [14]. GOES-16/17 senses 16
bands of data that are viewed in Fig. 2 and listed in Table I with
central wavelength, spatial resolution, and band name. Three
data products are derived from each GOES-16/17: 1) full disk
covering the western hemisphere every 10 min (15 min prior to
April 2, 2019) [see Fig. 1(a)]; 2) Continental U.S. every 5 min;
and 3) mesoscale user-directed 1000 km x 1000 km subregion
every at an optimal 30 s [see Fig. 1(b)]. ABI's 16 spectral
bands include two visible (1 and 2), four near-infrared (3-6),
and ten infrared (7-16) bands enabling a suite of applications.
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TABLE I
GOES-R SERIES BANDS

Central Spatial
Band Wavelength Resolution Name
(pm) (km)
1 0.47 1 Blue
2 0.64 0.5 Red
3 0.86 1 Veggie
4 1.37 1 Cirrus
5 1.6 1 Snow/Ice
6 2.24 2 Cloud Particle Size
7 3.9 2 Shortwave Window
8 6.2 2 Upper-level Water Vapor
9 6.9 2 Mid-level Water Vapor
10 7.3 2 Low-Level Water Vapor
11 8.4 2 Cloud-Top Phase
12 9.6 2 Ozone
13 10.3 2 ”Clean” IR Longwave
14 11.2 2 IR Longwave
15 12.3 2 ”Dirty” IR Longwave
16 133 2 CO2 Longwave IR

These GEO satellites are particularly useful in tracking
weather, monitoring high-intensity events, estimating rainfall
rates, fire detection, and many others in near real time.
The mesoscale mode gives forecasters the ability to “point”
the satellite at a user-specific subregion for near-constant
monitoring of severe events. For example, GOES-16 and
GOES-17 actively provide emergency response units tools for
decision-making during wildfires in the Western United States.
These high-frequency data provide valuable information on
environmental dynamics and retrospective analysis, such as
studying convective events [15]. Furthermore, mesoscale data
can be used to inform techniques to produce higher tempo-
ral resolution CONUS and full-disk coverage. In this work,
we develop a model to improve the temporal resolutions of
CONUS and full disk by learning an optical flow model to
interpolate between consecutive frames. With this, we are able
to generate 1-min full-disk artificially enhanced data.

III. RELATED WORK

In this section, we begin by reviewing previous work in the
areas of data fusion and resolution enhancement as applied
generally to remote sensing satellite imagery and some recent
successes of deep learning in the area. Second, we provide
a brief review of optical flow and video frame interpolation
techniques.

A. Resolution Enhancement of Satellite Data

Earth science datasets are complex and often require exten-
sive preprocessing and domain knowledge to effectively render
themselves useful for large-scale applications or monitor-
ing. Such datasets may contain frequent missing values due
to sensor limitations, low-quality pixel intensities, incom-
plete global coverage, and contamination with atmospheric
processes related to cloud and aerosols. Furthermore, spa-
tial and temporal resolution enhancement is often applied
to improve analysis precision. Techniques to handle these
challenges have been developed and are widely applied across
the remote sensing community.
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Fig. 2.
October 5, 2020, 15:05 UTC.

Many statistical and machine learning methodologies for
improving spatial resolution have been explored and are an
active area of research. Data fusion is one area where two or
more datasets are fused to generate an enhanced product, often
with both higher spatial and temporal resolutions [16]. The
Spatial and Temporal Adaptive Reflectance Fusion (STARFM)
algorithm, for example, uses Landsat and MODIS to produce a
daily 30-m reflectance product by using a spectralwise weight-
ing model [17]. Using CubeSats, Houborg and McCabe [18]
present an approach to further leverage Landsat and MODIS
for further spatiotemporal improvements. Similarly, nearest
neighbor analog multiscale patch-decomposition data-driven
models are used as state-of-the-art interpolation techniques for
developing global sea surface temperature (SST) datasets [19].
In recent years, super-resolution techniques have presented
state-of-the-art results for spatial enhancement of satellite
images [20]-[22].

Approaches for temporal resolution enhancement of indi-
vidual satellite observations have not been as well stud-
ied. Liebmann and Smith [23] presented the first linearly
interpolated datasets filling in missing and erroneous long-
wave radiation many days apart to improve global coverage.
Similarly, Kandasamy et al. [24] presented a comparison of
multiple methods for interpolating between MODIS observa-
tions to generate a synthetic leaf area index dataset. A num-
ber of statistical techniques, including long-term climatology
measures and time-series decomposition, were applied to
smooth observation and fill gaps. Reference [25] presented an
approach using linear interpolation on subdaily GEO imagery
to match timestamps between multiple satellites. However,
given more frequent observations by the recent generation
of GEO observations, more complex methods beyond linear
interpolation may be more applicable and accurate in the
temporal domain.

Our work proposes to apply deep learning-based optical
flow methodologies to optimize the interpolation problem.
In recent years, a number of applications in processing
and learning from satellite data have shown state-of-the-art
results using deep learning. For example, Benedetti er al. [26]
showed that recurrent and convolutional neural networks effec-
tively assimilate multiple satellite images. Lanaras et al. [22]
presented a global deep learning super-resolution approach
for Sentinal-2 with a 50% improvement beyond traditional
techniques. In terms of classification, DeepSat showed that
normalized deep belief networks that are tuned were able
to outperform traditional techniques for image classifica-

16 bands observed by GOES-16 mesoscale, including two visible, four near-infrared, and ten thermal infrared. Observation from mode RadM1 on

tions [27]. Convolutional neural networks have been shown to
effectively classify land use in remotely sensed images, from
urban areas [28] to crop types [29].

While many studies have explored resolution enhancement
spatially, and temporally, the authors are not aware of any
prior work exploring temporal interpolation at the minute-to-
minute scale. Prior approaches on longer time scales have
applied linear interpolation and nearest-neighbor techniques.
We explore the applicability of a more complex optical flow
approach to temporal interpolation at very high resolutions
and use linear interpolation as our baseline, as applied in
prior work. Atmospheric motion vectors (AMVs) are a related
line of work focused on tracking the movement of clouds
and corresponding heights to initialize numerical weather
prediction and data assimilation models [30], [31]. Traditional
techniques to AMVs use spatial similarities across time to
approximate lateral movement and often produce low yields
and coarsened resolution, which do not apply to temporal
interpolation. Recently, the optical flow has been shown to be
effective at this task [32], which could motivate future work.

B. Optical Flow and Video Frame Interpolation

Temporally interpolating between frames of images can be
computed with a weighted average of two frames, warped or
not, to a defined intermediate time, 7. Linear interpolation
is the simplest approach and can be written as 1(t) = Iy *
t 4+ I x (1 — 1), given two frames [y and I;. However, this
technique fails to account for any motion, physical phenomena,
and corresponding occlusion that occur between two frames
giving a poor performance. Temporal interpolation techniques
applied to video have shown high skill at generating slow-
motion footage by generating intermediate frames in spatially
and temporally coherent sequences [11]-[13], [33]. These
approaches are designed to learn the dynamics by inferring
displacement of spatial structure between consecutive images.
Optical flow is widely used for this task, which estimates
spatial displacement by comparing movement between two
images.

In recent years, deep learning architectures have shown
promising results for both optical flow and video interpolation.
Supervised learning of optical flow is often constrained by the
availability of training data as motion is rarely quantified in
real images. Datasets, such as Flying Chairs [34] and MPI
Sintel [35], have been generated synthetically and are used for
methods development but may not be realistic to real-world
scenes. High-performing architectures for supervised optical
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flow learning include FlowNet [36], [37], PWC-Net [38], and
RAFT [39] that take advantage of encoder—decoder, volume-
based correlations, pyramid, and recurrent layers. However,
since optical flow labels are rarely available, as is the case
in our GEO temporal interpolation, unsupervised learning
techniques are often applied to real-world naturally gener-
ated datasets. Unflow [40] presented an approach to training
Flownet using a bidirectional occlusion-aware unsupervised
reconstruction loss. Recent studies have improved unsuper-
vised learning further, such as Geonet [41] with depth per-
ception and [42] by predicted occlusion directly. In practice,
we have found that training fully unsupervised optical flow
networks on satellite imagery to be a nontrivial exercise
providing poor performance in our unreported experiments,
likely due to physical complexity in the dataset.

Many video interpolation techniques focus on single frame
interpolation, meaning that a single frame is estimated by
the model directly between two consecutive frames at ¢ =
0.5 [11], [33], [43]. However, when interpolating satellite
imagery, time-dependent and multiframe estimation is pre-
ferred for more flexibility. Jiang ef al. [13] presented SSM
that combines both optical flow and occlusion models for
time-dependent estimation between consecutive frames. The
time-dependent nature of this approach produces spatially and
temporally coherent predictions of any time between 0 and 1.
In their experiments, Jiang et al. [13] show that 240-frames/s
video clips can be estimated from 30-frames/s inputs. Further
details of this work will be presented in Section IV where we
apply their architecture with an extension to multiscale optical
flows.

High-frequency satellite imagery can take advantage of
these techniques to extract the dynamics of different physical
processes. Our application requires a time-dependent method-
ology with no labels available for supervised optical flow
learning. Furthermore, our imagery has 16 spectral bands in
the visible, near-infrared, and thermal-infrared spectra to cap-
ture physical phenomena and with varying spatial resolution.
Between frames, these processes, such as convection, break
optical flow’s consistency assumption making unsupervised
learning a challenge. SSM provides a fundamental technique
to temporal interpolation that is well suited to our application.
We generalize this approach with task-specific models for each
spectral band in our dataset. In the remainder of this work,
we study how SSM can be effectively applied to this problem
by experimenting with global- and task-specific models.

IV. METHODOLOGY

Temporal upsampling of GEO satellite data is a simi-
lar problem as intermediate video frame interpolation with
domain-specific characteristics. In video interpolation, the goal
is to estimate an intermediate frame given two or more
consecutive images. A single set of optical flows is sufficient
for interpolating between RGB images as objects captured in
the visible spectrum are reasonably consistent across frames.
However, as discussed above, satellite imagery often consists
of tens or even hundreds of spectral channels with varying
spatial resolutions. Furthermore, each channel captures differ-
ent physical properties with heterogeneous motion, including
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Fig. 3. SuperSlomo architecture with flow and interpolation networks.

severe events, such as convection leading to heavy precipita-
tion and tornadoes. The goals of the proposed methodologies
include interpolating to a user-defined point in time, capturing
varying spatial dynamics, and computational efficiency at
scale. In this section, we describe the SSM framework [13] for
temporal upsampling with the optical flow with our domain-
specific adaptions with global- versus task-specific networks.
The global model performs interpolation on all channels
simultaneously, while task specific can be learned for each
channel independently.

A. Intermediate Frame Interpolation

SSM intermediate frame interpolation considers the case
of frame estimation at a user-defined point in continuous
time [13]. To ensure smooth transitions and structural similar-
ity between frames, SSM 1is designed to predict optical flows
between two input images as a function of time. The approach,
which can be seen in Fig. 3, consists of two deep neural
networks. The first estimates forward and backward flows
between two input images. The second network, depending on
time, updates the forward and backward flows and generates
visibility maps to handle occlusion. These features of SSM
are well suited to GEO data by enabling arbitrary temporal
upsampling and synchronization of multiple datasets.

Let Iy, I}, I, € RT*W*C where t € (0, 1), H is the image
height, W is the image width, and C is the number of spectral
bands. Task-specific optical flow is defined when C = 1. The
goal is then to construct an intermediate frame /, with a linear
combination of warped Iy and /; as defined by

L =a-g(l, Fou) + (1 —a)-g(ly, Fi_,) (1)

where Fy_, and F;_; are the optical flows from Iy to [;
and I, to I, respectively. g is defined as the backward
warping function, implemented with bilinear interpolation, and
o represents a scalar weight coefficient to enforce temporal
consistency and allow for occlusion reasoning. In the case of
high temporal resolution satellite imagery, the interpolation is
virtually estimating the state of atmospheric variables (clouds,
water vapor, and so on) over a static land surface. If a given
pixel in Iy captures land surface, but the same pixel in /; sees a
cloud, the occlusion principle is used to estimate at what time #
the cloud covers the pixel. Furthermore, atmospheric dynamics
cause physical characteristics to change over time. One exam-
ple is convection such that warm/cold air vertically and rapidly
mixes in the atmosphere causing severe weather events. In the
context of interpolating, dynamics between I and I; cause
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Fig. 4. Global-versus task-specific networks for interpolation on multispectral cubes with SSM. (a) SSM-G. (b) SSM-T.

cloud temperature to rapidly decrease, leading to a drastic
change brightness intensity and breaking consistency assump-
tions of optical flow. Visibility maps, Vo rightarrows> Virightarrowr €
(0, D>V weight brightness importance to account for both
occlusion and intensity changes. Equation 1 is then be rede-
fined as

A 1
I = 7 (1 =1) - Vot - g(o, Fosr)
+t - Vlrighlarrowt : g(ll, Fl%t)) (2

where Z = (1 — 1) - Vo, +1t - Vi, is a normalization factor.
Forward and backward optical flows, (Fy—;, Fi—,), at time ¢
are estimated by a sequence of two flow networks, Ggow and
Ginterp» as presented in Fig. 3. The first network, Gow(lo, 11),
infers backward and forward optical flows, (Fy—1, Fi-0),
between two 1nput 1mages After generating approximate inter-
mediate flows, (F(H,, Flﬁt) intermediate images are gen-
erated. The interpolation network, Gyerp, predicts visibility
maps (Vo—, Vi) and final flows (Fy—,, Fi—;) as a function
of a concatenation of input images, intermediate flows, and
intermediate warped images.

B. Task-Specific Interpolation

Multispectral satellite imagery has multiple spectral chan-
nels, each observing varying phenomena, such as clouds mov-
ing faster at higher levels of the atmosphere. The movement of
objects within images of varying spatial resolutions can have
dramatic effects on the performance of optical flow networks.
In traditional optical flow, interpolation features are tracked
using a single model for single or three-channel images in
the visible range. The optical flow assumption of brightness
consistency is relatively well satisfied on the pixel level in high
frame-rate sequences. In satellite images, different movements
appear in each channel of the data with underlying physical
processes affecting brightness intensity. Rather than modeling
all the channels in a single SSM model, we propose to model
each channel independently. We denote SSM-G as the global
SSM model where all channels are modeled simultaneously,
as presented in Fig. 4. SSM-T, denotes task-specific networks
that are trained for individual channel c. Formally, SSM-T

learns a set of SSM models [//] for ¢ € C. While requirements
for graphics processing unit (GPU) computation multiply with
SSM-T, we will show that improved performance of task-
specific models improves results substantially.

C. Network Architecture

Deep neural networks with encoding and decoding are
well suited to model both local and global spatial struc-
tures. Architectures of this type include Flownet [36] and
U-Net [13], which have been shown to perform well in the
task of optical flow. We follow this approach using a U-Net
architecture for each of the flow and interpolation networks.
The U-Net architecture applied has four downsampling layers
followed by four upsampling layers with skip connections
between each corresponding layer. A convolution layer maps
the input to 64 channels with a kernel size of 7. The fol-
lowing downsampling layers are of size 128, 256, 512, and
512 with kernel sizes 5, 5, 3, and 3. Each downsampling
layer performs. average pooling and two convolutions with
rectified linear unit (ReLu) activations. Upsampling layers
of sizes 256, 128, 64, and 32 all with kernel sizes of 3
are then applied. Each layer performs bilinear interpolation
followed by two convolutions with ReLu activations. Finally,
32 channels in the last hidden layer are mapped to the number
of output channels using a convolution operation of kernel
size 3. Flow and interpolation networks use the same archi-
tecture with different input and output dimensions as discussed
above.

Tracking both small and large displacements continues to be
a challenge, even with encoder—decoder network architectures.
Other approaches have shown that using a stack of networks
performing small and large displacements performs well [37].
In this work, we explore the applicability of multiscale hidden
layers to track local and global features. We follow a similar
approach applied in [44] where hidden layers are defined
to have multiple convolution operations with different sized
kernels followed by a concatenation layer. In our networks,
kernels of sizes 3, 5, and 7 conserve high-frequency spatial
details while abstracting global motion for improved optical
flows and visibility maps.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

D. Training Loss

As all variables in the architecture are differentiable,
the model can be learned in an end-to-end manner. Given two
inputs frames Iy and I; with N intermediate frames {1,,.}5\]= 1
and corresponding predictions {f, };vzl, a loss function can be
defined as a weighted combination of reconstruction, warping,

and smoothness losses such that
I = 20 + Aply + Agls. 3)

We note that Jiang et al. [13] include a fourth term for the
perception of image classes that are not available for this
satellite dataset. Similarly, we employ L; loss functions for
each loss term unless noted otherwise.

The reconstruction loss is defined as the distance between
observed and predicted intermediate frames

1 N
I, = N;HI,,. -1l 4)

A warping loss is used to optimize estimated optical flows
between input and intermediate frames for channel ¢

lo = ||Io — g1, Fom)|| + ||t = gUo, Fimo)||

1 N
ty 211 = g(lo, For) ||

i=1

1 N
+ﬁ2H1ti_g(11;F1eti)H. 5)

i=1

A smoothness loss is applied to forward and backward flows
from Iy to I; to satisfy the smoothness assumption of optical
flows in the first network such that

b= ([ Focal|, + 7 Fizall, ©

In practice, this training setup requires optimization over
multiple hyperparameters, including 4,, 4y, 4,,, and a learning
rate.

V. EXPERIMENTS

We demonstrate the effectiveness of a set of SSM models
on a large-scale dataset using a high-performance computing
system with a cluster of GPUs. The goal of our experiments
is to show that optical flow is highly applicable for temporal
interpolation of satellite imagery and compare to the baseline
of linear interpolation, as traditionally applied. Section V-A
outline the training process, compare methodologies, and
study the effectiveness of a severe convective precipitation
event. Code for this work can be found in the Supplementary
Material.!

A. Training

Data for training and testing were taken from the GOES-
16 Mesoscale 1-min imagery. These images are of identical
spatial and spectral resolution as North America and full-
disk imagery, so the learned models are directly applicable to

Uhttps://github.com/tjvandal/geostationary-superslomo

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

50.0 °  SSM-T
o SSM-TMS
- o SSMG
47.5 ® Linear
45.0

o

& 425

a

40.0
37.5
35.0
01 02 03 04 05 06 07 08 09
Time of interpolation (t)
Fig. 5. Interpolation error as a function of time.

45 o SSM-T
*  SSM-TMS
¢ SSM-G

40 Linear

o
&
a 35

30

5 10 15 20 25 30 35 40 45
Temporal Gap Between Images

Fig. 6. Interpolation error as a function of temporal gap between observations.

these datasets. Training data were selected using all samples
for every five days of the year 2018 and testing data on a
randomly selected set of examples from 2019. Samples were
generated as 264 x 264 subimages and randomly cropped to
256 x 256 during training. Standardized normalization was
applied independently to each channel to ensure similar pixel
intensity distributions across bands. Temporally, samples are
selected from a sequence of 15 time steps such that inputs
({y, 1) are 10-min apart with a random label /, in-between.
Furthermore, during training, images are randomly flipped
and rotated to improve generality in the U-Net architecture.
A random training/validation split of 20% was used to monitor
learning. We select cloud top temperature tracked by band
13 (10.3 um) in ablation and demonstration experiments as
used in studies of convection and AMVs. Experiments for
this study leveraged NASA’s Pleiades Supercomputer and
the NASA Earth eXchange (NEX) to process large-scale
GOES-16 data and train individual networks for each of the
16 channels.

Adam optimization is used to minimize (3) with default
parameters f; = 0.9, f = 0.999, and eps = le-8 in
PyTorch. We found that learning is sensitive to hyperpa-
rameters 1; and A, and are optimized using probabilistic
grid search and constrained Bayesian optimization [45]. Con-
strained Bayesian optimization applies efficient randomized
Monte Carlo simulations over A, and 4, holding 1, = 1.
We perform this process using the open-source Ax library [46]



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

VANDAL AND NEMANI: TEMPORAL INTERPOLATION OF GEO SATELLITE IMAGERY WITH OPTICAL FLOW 7
TABLE II
MODEL COMPARISON RESULTS FROM 200 RANDOMLY SELECTED SAMPLES IN 2019. BOLD HIGHLIGHTS
THE TOP PERFORMING MODEL, AND * HIGHLIGHTS THE SECOND BEST
PSNR 1 RMSE | SSIM 1
Band | pm Linear SSM-G  SSM-T SSM-TMS \ Linear SSM-G SSM-T SSM-TMS \ Linear SSM-G SSM-T SSM-TMS
1 0.47 | 37.795 36.828 38.282 37.818* 0.178*  0.198 0.160 0.185 0.719 0.682 0.734 0.722*
2 0.64 | 37.408 37.006 37.748 37.583* 0.185 0.186 0.169 0.177* 0.637 0.616 0.649 0.644*
3 0.86 | 41.808 40.544 41.350*  41.135 0.100*  0.112 0.099 0.108 0.760 0.712 0.731 0.737*
4 1.37 | 60.519  60.838 62.598 61.925* 0.012 0.011 0.008 0.009* 0.969 0.974 0.983 0.982*
5 1.6 56.097 55.129 56.044*  55.703 0.018 0.019 0.018 0.018 0.932 0.928 0.937 0.935*
6 2.24 | 55.076  58.316 58.693*  58.758 0.373 0.255 0.242 0.242 0.747 0.884 0.893* 0.895
7 3.9 40.721  46.084 46.591 46.496* 1.825 0.972 0.917 0.932* 0.766 0.899 0.907 0.905*
8 6.2 50.669  57.656 58.432 58.135* 0.613 0.374 0.226 0.358* 0.747 0.907 0.913 0.912*
9 6.9 47476  55.287 56.014*  56.015 0.904 0.336 0.306* 0.305 0.756 0.924 0.929 0.929
10 7.3 44.601  52.535 53.226 53.120* 1.222 0.582 0.418 0.550* 0.748 0.919 0.924 0.924
11 8.4 38.530  44.753 45.184*  45.243 2.335 1.071 1.020 1.013* 0.770 0.922 0.929 0.929
12 9.6 43.560  49.568 50.023*  50.030 1.314 0.626 0.594 0.594 0.762 0.913 0.921 0.920*
13 10.3 | 38.667 44.925 45.439 45.343* 2.286 1.177 0.991 1.130* 0.782 0.925 0.933 0.932*
14 11.2 | 38.167 44.594 44.996*  45.090 2.392 1.080 1.036* 1.024 0.770 0.924 0.931* 0.932
15 12.3 | 38.163  44.699 45.284 45.252* 2.387 1.185 0.991 1.118* 0.762 0.921 0.929* 0.930
16 13.3 | 40.578 47.313 47.731*  47.778 1.819 0.786 0.751* 0.745 0.721 0.892 0.898* 0.899
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Severe convective event on May 23, 2019 from 2:00 to 2:30 UTC taken from GOES-16 mesoscale band 13, clean long-wave infrared (10.3 xm).

(a) and (f) are in the input images, and their difference in 7(k). (b)-(e) SSM-T interpolated predictions, flow intensity, and direction in (g)—(j) and visibility

maps in (1)—(0).

for 20 trials on band 1 with SuperSlomo and find 1; = 0.23
and 1,, = 0.65 minimized reconstruction loss on the validation
set. These hyperparameters are applied to all following bands
and experiments. Training the suite of models was executed
on a multinode GPU cluster of Nvidia V100’s with one model
per band, each taking one day to train. Multi-GPU training
was used for serial hyperparameter optimization and global
models.

B. Model Comparison

This section compares variations of SuperSlomo with a
linear interpolation baseline for interpolation of GEO images.
Linear interpolation between frames is performed by taking
a linear combination of two input images weighted by time,
I, = (1 —1)xIo+1tx1I,. A set of three SuperSlomo models are
explored, including global (SSM-G), task specific (SSM-T),
and task specific with multiscale layers (SSM-TMS). SSM-T
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Fig. 8. Time-series interpolation of long-wave clean IR band 13 (10.3 x«m) during two severe weather events. Left to right: observed and interpolated time

series followed by starting and ending observations. (a)—(c) Observation of 32.0° latitude and —83.0° longitude on March 3, 2019, from 18:00 to 21:00 UTC,
depicted on images with a red circle. (d)—(f) Observation of 26.7° latitude and —76.8° longitude on September 1, 2019, from 12:00 to 17:00 UTC.

models are trained for each band separately. SSM-G is trained
using training data from all bands and, hence, a substantially
larger training set. The root mean square error (RMSE),
the peak-to-signal-noise ratio (PSNR), and the self-similarity
measure (SSIM) are used to evaluate performance.

We first study the inherent properties of SSM on band 13,
including time dependence and sensitivity to larger displace-
ments. Interpolation between two frames is expected to have
smooth transitions from one frame to another. Generally,
interpolation will have the largest error where the distance to
frames is maximum (i.e., directly between the input frames).
In Fig. 5, we compare PSNR as a function of ¢+ € [0, 1]
between models and see this effect. The gap between linear
and SSM models is pronounced. Between SSM models, SSM-
T and SSM-TMS have similar performance. SSM-G that is a
more generalized model does not perform quite as well SSM-T
and SSM-TMS, suggesting task-specific models across bands
perform better. Fig. 6 shows PSNR at r = 0.5 while increasing
the gap between [y to I; from 5 to 45 min. A 45-min gap
contains 9x more displacement than a 5-min gap making the
optical flow problem more difficult. Over the first 15 min,
SSM models perform similarly and better than linear. As the
gap widens, SSM-TMS and SSM-G begin performing better
than SSM-T. This suggests that SSM-TMS multiscale layers
may be capturing more motion. SSM-G’s more diverse dataset
includes 500-m data, which has larger displacements than the
2-km band 13.

In Table II, we present the results for each of the 16 bands
of GOES-16 in 200 randomly sampled 10-min intervals from

2019. Metrics are computed for each sample at t = 0.5, where
the error is the largest and averages over all examples. Errors
are in terms of brightness temperatures measured by the sen-
sor. As a whole, our results find that task-specific SSM models,
SSM-T and SSM-TMS, outperform linear interpolation and a
single global interpolation network, SSM-G. Interpolation of
the visible (1 and 2) bands with optical flow provides modest
improvements in all metrics. Performance improvements are
not found for NIR bands 3 and 5, veggie, and snow/ice,
respectively, where each method produces high PSNRs and
low RMSEs. On the other hand, thermal bands find large
improvements from SSM optical flow, increasing SSIM from
approximately 0.77 to 0.93, on average. We find that task-
specific models outperform the global model throughout even
with the reduced training data size. Errors do vary across
bands, which is largely associated with the radiance distri-
bution of that particular band. For instance, band 4 (1.37 xm)
is typically sparse such that predicting low intensities is an
easy task.

C. Severe Weather Event

This section studies an example of two convective precip-
itation events visualized in Figs. 7 and 8. In the context of
severe weather, convection is vertical motion in the atmosphere
that occurs when warm air on the surfaces forces cold air
in the atmosphere down often causing supercells and heavy
precipitation. For the first time, Apke et al. [47] studied this
process using GOES-14 1-min imagery for a set of super-
cells. The authors found that atmospheric motion can help
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define signatures of supercell events to better inform weather
forecasting models. Here, we show that cloud top brightness
from the long-wave clean IR band can be interpolated from
10 to 1 min during two convective events.

The 1-min mesoscale (M1) data from May 23, 2019, from
2:00 to 3:00 UTC at —95° longitude and 37° latitude are
used for the analysis. In this region, a convective storm is
occurring and moving east. The data are downsampled to
10 min interpolated back to a 1-min time series. Fig. 7(a)
shows the region of interest with predictions (/;), optical flows
(Fo—), and visibility maps (Vy-;) between times O and ¢.
The optical flows show the storm moving east and slightly
rotating with a maximum displacement around the storm
edges. Visibility pixels correspond to edges of clouds, which
allows (1) to be a nonlinear combination relative to time. The
flows and visibility maps in Fig. 7(h)—(j) and (m)—(o) show
an increasingly apparent horizontal strip of contrasting flows
caused by two artifacts of the approach. First, the approach
uses both flows and occlusion maps to take a nonlinear
combination of beginning and end images and can weigh some
areas more than others. Second, U-Net depends on constant
input size, so images are interpolated in blocks with stride 20,
which can cause artifacts. As our approach is not optimizing
flows directly, but rather the interpolation, these artifacts are
less pronounced in the predictions.

Fig. 8 presents time series of two severe events with the
corresponding observations. The first row depicts a tornado
outbreak in the southeastern United States on March 3, 2019,
where we see variability in cloud top brightness. A dashed line
shows the 10-min time series and is equivalent to linear inter-
polation. SSM-T overlayed the observation and well captures
the variability of a drastic 15 K temperature dropout interpo-
lation approach that generates a highly correlated time series
with an R-squared of 0.955. The second row shows a time
series through the eye of Hurricane Dorian on September 1,
2019. Similarly, we find that SSM-T is highly correlated with
an R-squared of 0.986. These results suggest that optical flow
may be a promising approach for interpolating GEO imagery
for applications to severe events.

VI. CONCLUSION

This work proposes that temporal interpolation with the
optical flow is capable of modeling high-frequency events
between GEO images with high accuracy by learning from
mesoscale rapid-scan observations. Experiments showed that
learning independent weights of SSM for each band improve
performance beyond one global SSM and the linear inter-
polation baseline. Multiscale blocks in SSM-TMS perform
well for larger displacements and are comparable to SSM-T
overall. Interpolation well captured temporal variability of
cloud top brightness during multiple severe convective events.
This interpolation has direct applications to improve precip-
itation estimation and weather variability. Furthermore, deep
learning-based optical flow routines are able to better harness
graphical processing units with a single feedforward pass [36]
relative to traditional and more expensive routines, such as the
polynomial expansion method applied in [32]. Improvements

and accuracy from deep learning approaches to optical flow
present a promising direction for future work.

While further analysis is necessary, our results suggest that
dynamics of atmospheric motion are learned by the network
using displacement flows and visibility maps, which would
have direct implications for weather forecasting. Second, inter-
nal dynamics captured may provide knowledge on how to
predict future states as applied for video-frame prediction.
In future work, we will explore the accuracy of optical
flow to estimating atmospheric motion relative to large-scale
observations and model interpretability to better understand
which physical dynamics are captured.
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